

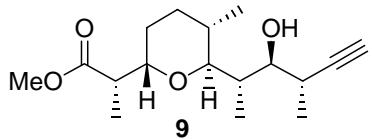
Supporting Information

Total Synthesis of Zincophorin Methyl Ester

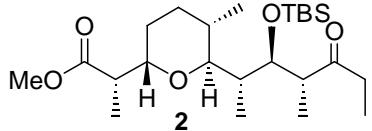
Magali Defosseux, Nicolas Blanchard, Christophe Meyer* and Janine Cossy*

Laboratoire de Chimie Organique, associé au CNRS, ESPCI

10 rue Vauquelin – 75231 Paris Cedex 05 France

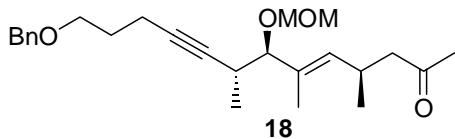

General

TLC was performed on Merck 60F₂₅₄ silica gel plates and visualized either with a UV lamp (254 nm), or by using a solution of *p*-anisaldehyde/sulfuric acid/acetic acid in EtOH followed by heating.

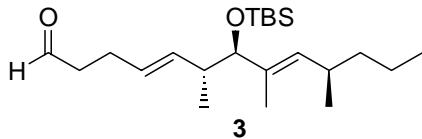

Flash chromatography was performed with SDS 60 silica gel (230-400 mesh).

Infrared (IR) spectra were recorded on a Perkin-Elmer 298, wavenumbers are indicated in cm^{-1} . ¹H NMR spectra were recorded on a Bruker AC 300 at 300 MHz and data are reported as follows: chemical shift in ppm from tetramethylsilane as an internal standard, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or overlap of non equivalent resonances), integration. ¹³C NMR spectra were recorded on a Bruker AC 300 at 75 MHz and data are reported as follows: chemical shift in ppm from tetramethylsilane with the solvent as an internal indicator (CDCl_3 δ 77.0 ppm), multiplicity with respect to proton (deduced from DEPT experiments, s = quaternary C, d = CH, t = CH₂, q = CH₃). Mass spectra with electronic impact (MS-EI) were recorded from a Hewlett-Packard tandem 5890A GC (12 m capillary column) – 5971 MS (70 eV). Mass spectra with chemical ionization (MS-Cl⁺) and high resolution mass spectra (HRMS) were performed by the Centre de Spectrochimie Organique de l'Ecole Normale Supérieure Ulm (Paris). Elemental analyses were performed by the Centre Régional de Microanalyses (Université Pierre et Marie Curie, Paris VI).

Spectral data of key intermediates

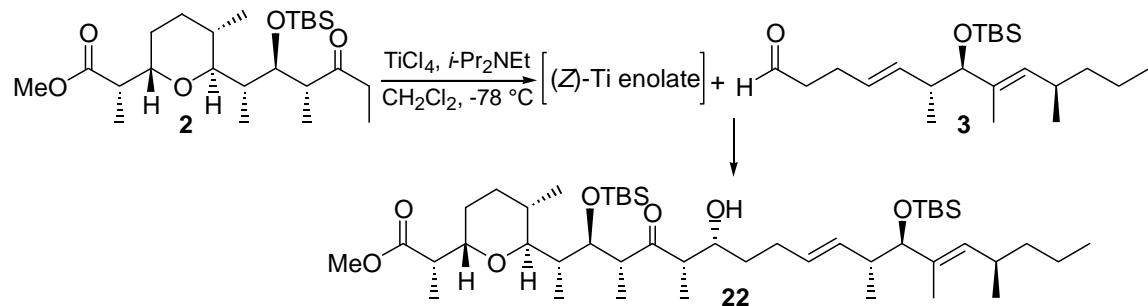


Methyl (2S)-2-[(2S,5S,6S)-6-((1S,2S,3S)-2-hydroxy-1,3-dimethylpent-4-ynyl)-5-methyltetrahydro-2H-pyran-2-yl]propanoate (9): White solid, R_f 0.31 (petroleum ether/EtOAc: 80/20); m.p. = 90 °C; $[\alpha]_D^{20} +44.2$ (c 1.15, CHCl₃); IR (film): 3530, 1710, 1275, 1255, 1245, 1235, 1105, 1080, 1040, 1020, 970 cm⁻¹; ¹H NMR (CDCl₃) δ 3.94 (m, 1H), 3.72 (s, 3H), 3.67 (dd, J = 9.9 and 1.8 Hz, 1H), 3.49 (d, J = 6.6 Hz, 1H, OH), 3.22 (m, 1H), 3.17 (dq, J = 11.0 and 6.8 Hz, 1H), 2.67 (m, 1H), 2.05 (d, J = 2.2 Hz, 1H), 1.93 (m, 1H), 1.82-1.54 (m, 3H), 1.29 (d, J = 7.0 Hz, 3H), 1.30-1.21 (m, 2H), 1.06 (d, J = 6.6 Hz, 3H), 0.83 (d, J = 6.3 Hz, 3H), 0.82 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃) δ 176.7 (s), 85.4 (s), 75.3 (d), 74.7 (d), 73.8 (d), 69.6 (d), 52.0 (q), 39.8 (d), 38.2 (d), 31.8 (d), 29.2 (d), 27.5 (t), 25.3 (t), 18.5 (q), 17.6 (q), 14.2 (q), 9.2 (q); MS-Cl⁺ (CH₄) m/z (%): 297 (M+H⁺, 100), 279 (13), 243 (23), 185 (35); HRMS (Cl⁺, CH₄) Calcd for C₁₇H₂₉O₄ (M+H⁺): 297.2068. Found: 297.2065.


Methyl (2S)-2-((2S,5S,6S)-6-{{[(1R,2R,3R)-2-(tert-butyldimethylsilyl)oxy]-1,3-dimethyl-4-oxohexyl}-5-methyltetrahydro-2H-pyran-2-yl]propanoate (2): Colorless oil, $[\alpha]_D^{20} -10.8$ (c 0.65, CHCl₃); IR (film) 1740, 1720, 1255, 1165, 1050, 835, 775 cm⁻¹; ¹H NMR (CDCl₃) δ 3.93 (dd, J = 7.0 and J = 4.0 Hz, 1H), 3.71 (s, 3H), 3.70 (m, 1H), 3.43 (dd, J = 8.5 and 3.7 Hz, 1H), 2.77 (apparent quintet, J = 7.0 Hz, 1H), 2.59 (dq, J = 8.8 and 7.0 Hz, 1H), 2.51 (q, J = 7.2 Hz, 2H), 2.13 (m, 1H), 1.87-1.72 (m, 2H), 1.54-1.38 (m, 3H), 1.08 (d, J = 7.0 Hz, 3H), 1.03 (d, J = 7.0 Hz, 3H), 1.01 (t, J = 7.2 Hz, 3H), 0.97 (d, J = 7.4 Hz, 3H), 0.89 (d, J = 7.0 Hz, 3H), 0.87 (s, 9H), 0.10 (s, 3H), 0.01 (s, 3H); ¹³C NMR (CDCl₃) δ 213.7 (s), 175.8 (s), 78.8 (d), 75.9 (d), 71.8 (d), 51.6 (q), 49.2 (d), 44.8 (d), 39.2 (d), 36.6 (t), 28.1 (d), 25.9 (q, 3C), 25.5 (t), 23.6 (t), 18.2 (q), 18.0 (s), 13.6 (q), 13.4 (q), 9.6 (q), 7.4 (q), -4.3 (q), -4.8 (q); MS-

Cl^+ (CH_4) m/z (%): 443 ($\text{M}+\text{H}^+$, 100), 427 (7), 385 (8), 311 (30), 243 (8), 185 (32); HRMS (Cl^+ , CH_4) Calcd for $\text{C}_{24}\text{H}_{47}\text{O}_5\text{Si}$ ($\text{M}+\text{H}^+$): 443.3193. Found: 443.3185.

(E)-(4R,7R,8R)-13-Benzyl-7-methoxymethoxy-4,6,8-trimethyltridec-5-en-9-yn-2-one

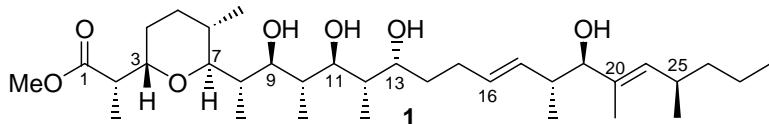

(18): Colorless oil; R_f 0.50 (petroleum ether/EtOAc: 70/30); $[\alpha]_D^{20}$ +1.1 (c 1.15, CHCl_3); IR (film) 1715, 1150, 1095, 1030, 920, 740, 700 cm^{-1} ; ^1H NMR (CDCl_3) δ 7.35-7.25 (m, 5H), 5.18 (br d, J = 9.6 Hz, 1H), 4.61 (d, J = 6.6 Hz, 1H), 4.51 (d, J = 6.6 Hz, 1H), 4.50 (s, 2H), 3.71 (d, J = 9.2 Hz, 1H), 3.55 (t, J = 6.4 Hz, 2H), 3.41 (s, 3H), 2.99 (m, 1H), 2.61 (m, 1H), 2.38 (d, J = 7.0 Hz, 2H), 2.29 (td, J = 7.2 and 2.2 Hz, 2H), 2.09 (s, 3H), 1.79 (m, 2H), 1.56 (d, J = 1.5 Hz, 3H), 0.99 (d, J = 7.0 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H); ^{13}C NMR (CDCl_3) δ 207.7 (s), 138.6 (s), 136.2 (d), 131.2 (s), 128.3 (d, 2C), 127.6 (d, 2C), 127.5 (d), 93.0 (t), 84.9 (d), 83.1 (s), 80.2 (s), 72.9 (t), 69.1 (t), 55.4 (q), 50.7 (t), 30.5 (q), 29.2 (t), 29.1 (d), 28.6 (d), 20.8 (q), 18.0 (q), 15.7 (t), 10.8 (q); MS-EI m/z (%): 339 (M^+-OMOM , 0.4), 200 (13), 199 (100), 141 (16), 137 (29), 125 (34), 121 (12), 109 (25), 95 (12), 91 (67). Anal Calcd for $\text{C}_{25}\text{H}_{36}\text{O}_4$: C, 74.96 ; H, 9.06. Found: C, 74.79 ; H, 9.25.

(4E,6R,7R,8E,10R)-7-[(tert-Butyldimethylsilyl)oxy]-6,8,10-trimethyltridecadi-4,8-enal


(3): Colorless oil; $[\alpha]_D^{20}$ -11.8 (c 0.93, CHCl_3); IR (film) 1725, 1250, 1060, 870, 835, 775 cm^{-1} ; ^1H NMR (CDCl_3) δ 9.78 (t, J = 1.8 Hz, 1H), 5.48 (dd, J = 15.4 and 7.2 Hz, 1H), 5.37 (m, 1H), 4.99 (br d, J = 9.6 Hz, 1H), 3.56 (d, J = 8.5 Hz, 1H), 2.50 (m, 2H), 2.44-2.31 (m, 3H), 2.22 (m, 1H), 1.53 (d, J = 1.5 Hz, 3H), 1.32-1.11 (m, 4H), 0.91 (d, J = 6.6 Hz, 3H), 0.89-0.82 (m, 3H), 0.86 (s, 9H), 0.79 (d, J = 6.6 Hz, 3H), -0.01 (s, 3H), -0.05 (s, 3H); ^{13}C NMR (CDCl_3) δ 202.3 (s), 135.6 (d), 134.7 (s), 134.3 (d), 126.8 (d), 83.7 (d), 43.5 (t), 40.8 (d), 39.9 (t), 31.7 (d), 25.8 (q, 3C), 25.3 (t), 20.7 (q), 20.6 (t), 18.2 (s), 17.0 (q), 14.2 (q), 11.1 (q), -4.5 (q), -5.0 (q); MS- Cl^+ (CH_4) m/z (%): 367 ($\text{M}+\text{H}^+$, 10), 351 (20), 309 (13), 255 (56),

235 (M^+ -OTBS, 100), 217 (17), 151 (22), 111 (21); HRMS (Cl⁺, CH₄) Calcd C₂₂H₄₃O₂Si (M+H⁺): 367.3032. Found: 367.3029.

Methyl (2S)-2-((2S,5S,6S)-6-[(1R,2R,3R,5S,6R,9E,11R,12R,13E,15R)-2,12-bis[(tert-butyldimethylsilyl)oxy]-6-hydroxy-1,3,5,11,13,15-hexamethyl-4-oxooctadi-9,13-enyl]-5-methyltetrahydro-2H-pyran-2-yl)propanoate (22): To a solution of ethylketone 2 (60.0 mg, 0.136 mmol) in anhydrous CH₂Cl₂ (2.5 mL) at -78 °C, was added a solution of freshly distilled TiCl₄ (190 μ L, 0.75 M in CH₂Cl₂, 0.142 mmol, 1.05 equiv.) and after 1 min, *i*-Pr₂NEt (30 μ L, 0.17 mmol, 1.3 equiv.) was added. After 1 h at -78 °C, a solution of aldehyde 3 (36 mg, 0.098 mmol, 0.72 equiv.) in CH₂Cl₂ (2.5 mL) was added dropwise and the reaction was quenched 2 h later by addition of a saturated aqueous solution of NH₄Cl. The reaction mixture was diluted with Et₂O and H₂O, the layers were separated and the aqueous phase was extracted with ether. The combined extracts were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The ¹H NMR spectrum of the crude material indicated the formation of 22 with high diastereoselectivity (d.r. > 96/4). Purification by flash chromatography (petroleum ether/Et₂O: 90/10, 85/15) afforded 55 mg (70%) of 22 as a colorless oil and 18 mg (30%) of ethylketone 2 was recovered; $[\alpha]_D^{20}$ -21.3 (c 1.15, CHCl₃); IR (film) 3440, 1740, 1695, 1255, 1165, 1060, 835, 775 cm⁻¹; ¹H NMR (CDCl₃) δ 5.45 (dd, *J* = 15.4 and 6.2 Hz, 1H), 5.36 (m, 1H), 4.97 (br d, *J* = 8.5 Hz, 1H), 4.04 (m, 1H), 3.90 (dd, *J* = 7.0 and 3.3 Hz, 1H), 3.71 (s, 3H), 3.70 (m, 1H), 3.55 (d, *J* = 8.1 Hz, 1H), 3.42 (dd, *J* = 7.9 and 3.9 Hz, 1H), 3.13 (br s, 1H, OH), 3.03 (apparent quintet, *J* = 7.0 Hz, 1H), 2.67-2.57 (m, 2H), 2.36 (m, 1H), 2.23-2.11 (m, 3H), 1.99 (m, 1H), 1.87-1.70 (m, 2H), 1.65-1.39 (m, 4H), 1.53 (d, *J* = 1.5 Hz, 3H), 1.35-1.19 (m, 5H), 1.13 (d, *J* = 7.4 Hz, 3H), 1.08 (d, *J* = 7.0 Hz, 3H), 1.01 (d, *J* = 6.6 Hz, 3H), 0.97 (d, *J* = 7.0 Hz, 3H), 0.93 (d, *J* = 7.0 Hz, 3H), 0.90 (d, *J* = 7.0 Hz, 3H), 0.87 (s, 9H), 0.88-0.84 (m, 3H), 0.85 (s, 9H), 0.78 (d, *J* = 7.0 Hz, 3H), 0.09 (s, 3H), 0.01 (s, 3H), -0.02 (s, 3H), -0.06 (s, 3H); ¹³C NMR (CDCl₃) δ 219.0 (s), 175.7 (s), 134.8 (s),

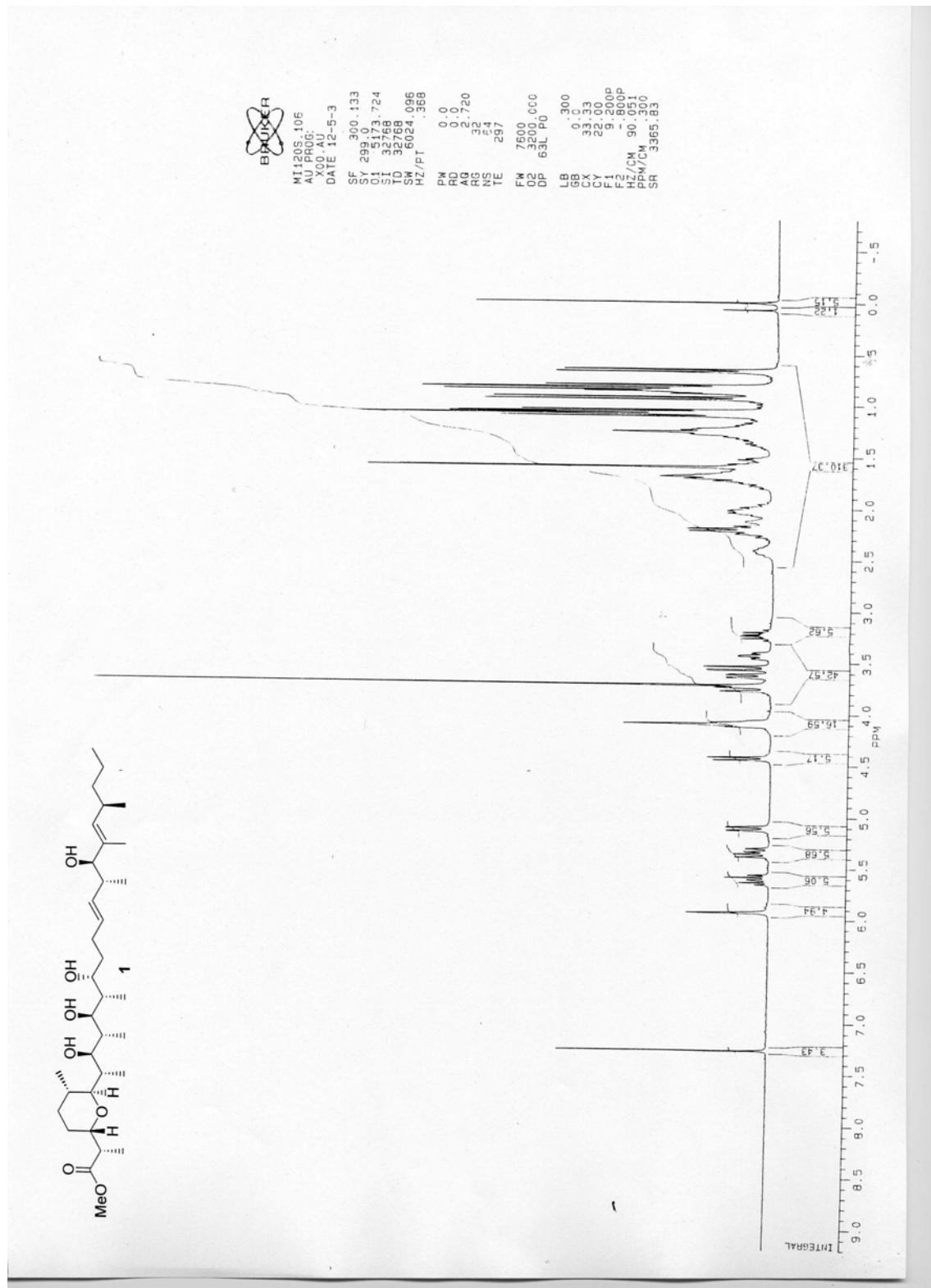

134.5 (d), 134.1 (d) 128.7 (d), 83.9 (d), 78.7 (d), 76.7 (d), 72.0 (d), 69.7 (d), 51.6 (q), 50.4 (d), 46.7 (d), 44.4 (d), 40.8 (d), 40.0 (d), 39.9 (t), 33.6 (t), 31.6 (d), 29.4 (t), 28.3 (d), 25.94 (q, 3C), 25.87 (q, 3C), 25.6 (t) 23.7 (t), 20.8 (q), 20.7 (t), 18.2 (q), 18.1 (s, 2C), 17.0 (q), 14.23 (q), 14.16 (q), 13.5 (q), 11.1 (q), 9.3 (q), 8.7 (q), -4.4 (q), -4.5 (q, 2C), -4.9 (q); HRMS (Cl⁺, NH₃) Calcd C₄₆H₉₂NO₇Si₂ (M+NH₄⁺): 826.6412. Found: 826.6417.

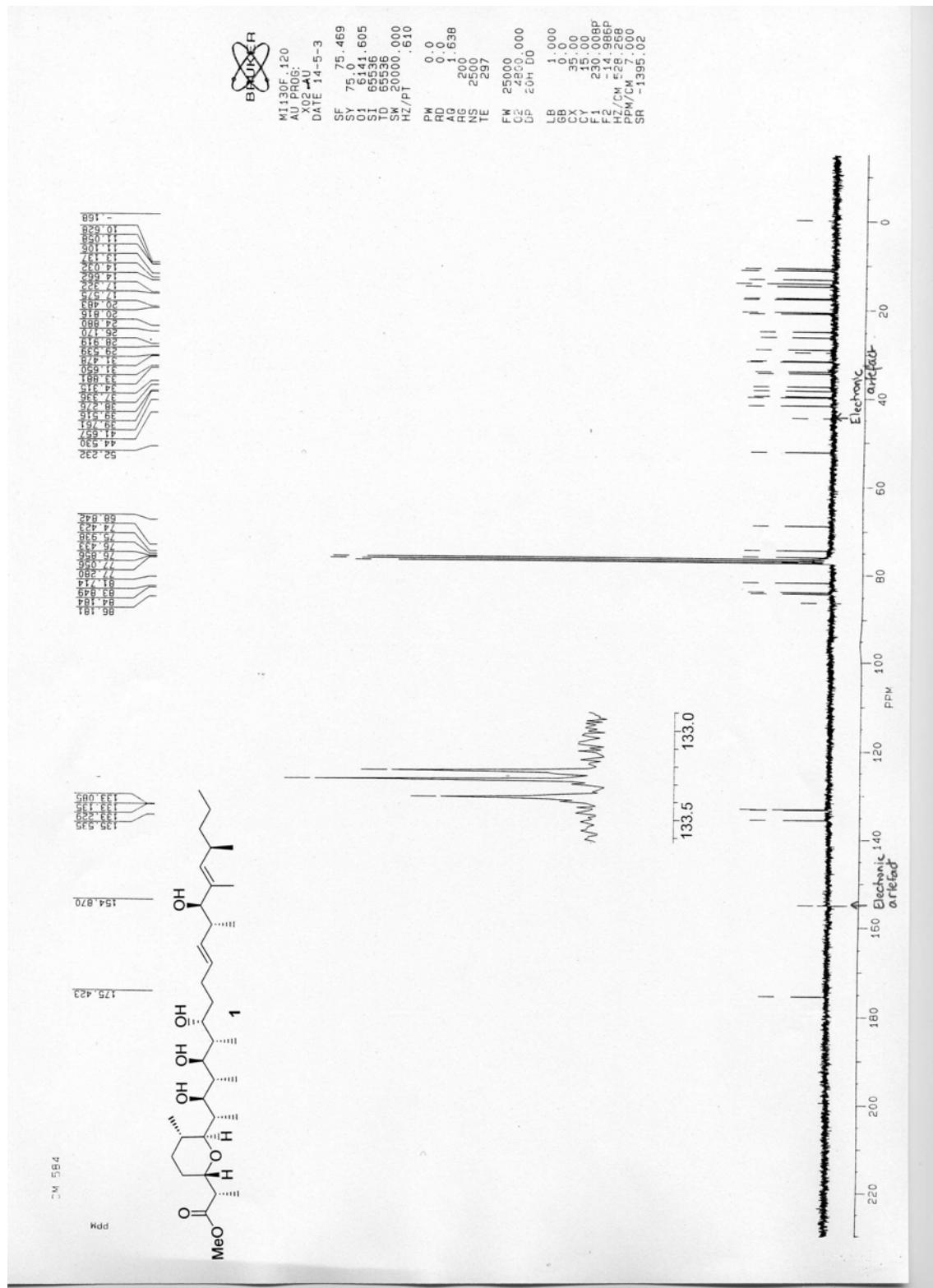
Methyl (2S)-2-[2S,5S,6S)-6-((1S,2S,3S,4S,5S,6R,9E,11R,12R,13E,15R)-2,4,6,12-tetrahydroxy-1,3,5,11,13,15-hexamethyloctadi-9,13-enyl)-5-methyltetrahydro-2H-pyran-2-yl]propanoate (zincophorin methyl ester) (1): To a solution of **22** (23 mg, 0.028 mmol) in MeOH (5 mL) at 0-5°C, was added portionwise NaBH₄ (40 mg, 0.11 mmol, 4 equiv.) [four portions, every 20 min]. After 1 h, the reaction mixture was hydrolyzed with a saturated aqueous solution of Rochelle's salt and diluted with H₂O and Et₂O. The layers were separated and the aqueous phase was extracted with Et₂O. The combined extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was dissolved in THF (5 mL) and to the resulting solution at 0-5 °C [polyethylene container], was added HF.pyridine complex (1 mL). After 1 h 30 at rt, the reaction mixture was diluted with Et₂O and H₂O, cautiously neutralized by addition of solid NaHCO₃ and extracted with Et₂O. The combined extracts were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography (*n*-hexane/EtOAc: 50/50) to afford 11 mg (66%) of zincophorin methyl ester **1**; *R*_f 0.6 (*n*-hexane/EtOAc: 50/50); *R*_f 0.4 (C₆H₆/Et₂O: 50/50); [α]_D²⁰ +21.3 (c 0.4, CHCl₃); IR (CHCl₃) 3380, 1730, 1460, 1380, 1280, 1260, 1215, 1120, 1080, 1020, 970 cm⁻¹; ¹H NMR (CDCl₃) δ 5.93 (s, 1H), 5.61 (dt, *J* = 15.1 and 6.6 Hz, 1H), 5.34 (dd, *J* = 15.1 and 8.8 Hz, 1H), 5.11 (br d, *J* = 9.2 Hz, 1H), 4.43 (d, *J* = 8.1 Hz, 1H), 4.12-4.06 (m, 3H), 3.76 (d, *J* = 10.3 Hz, 1H), 3.72 (s, 3H), 3.63 (dd, *J* = 8.8 and

1.8 Hz, 1H), 3.55 (d, J = 9.6 Hz, 1H), 3.44 (m, 1H), 3.23 (apparent dq, J = 10.8 and 7.0 Hz, 1H), 2.41 (m, 1H), 2.29-2.14 (m, 3H), 2.12 (br s, 1H), 2.08-1.96 (m, 2H), 1.78-1.52 (m, 4H), 1.60 (d, J = 1.5 Hz, 3H), 1.41-1.15 (m, 6H), 1.10 (d, J = 6.6 Hz, 3H), 1.08 (d, J = 6.6 Hz, 3H), 1.06 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H), 0.90-0.80 (m, 5H), 0.84 (d, J = 6.6 Hz, 3H), 0.82 (d, J = 6.2 Hz, 3H), 0.66 (d, J = 6.6 Hz, 3H); ^{13}C RMN (CDCl_3) δ 175.6 (s), 135.7 (d), 133.4 (d), 133.3 (s), 133.2 (d), 84.4 (d), 84.0 (d), 81.8 (d), 76.1 (d), 74.5 (d), 68.9 (d), 52.3 (q), 41.8 (d), 39.9 (t), 39.7 (d), 38.4 (d), 37.5 (d), 34.4 (t), 34.0 (d), 31.8 (d), 31.6 (d), 29.1 (t), 26.3 (t), 25.0 (t), 21.0 (q), 20.6 (t), 17.7 (q), 17.5 (q), 14.8 (q), 14.2 (q), 13.3 (q), 11.25 (q), 11.20 (q), 10.8 (q); HRMS (CI $^+$, NH_3) Calcd for $\text{C}_{34}\text{H}_{63}\text{O}_7$ ($\text{M}+\text{H}^+$): 583.4574. Found: 583.4578.

Comparison with the literature data reported for **1** (Danishefsky et al. *J. Am. Chem. Soc.* **1988**, *110*, 4368)

Observed data for **1**


¹ H NMR (300 MHz, CDCl ₃) δ
5.93 (s, 1H)
5.61 (dt, <i>J</i> = 15.1 and 6.6 Hz, 1H)
5.34 (dd, <i>J</i> = 15.1 and 8.8 Hz, 1H)
5.11 (br d, <i>J</i> = 9.2 Hz, 1H)
4.43 (d, <i>J</i> = 8.1 Hz, 1H)
4.12-4.06 (m, 3H)
3.76 (d, <i>J</i> = 10.3 Hz, 1H)
3.72 (s, 3H)
3.63 (dd, <i>J</i> = 8.8 and 1.8 Hz, 1H)
3.55 (d, <i>J</i> = 9.6 Hz, 1H)
3.44 (m, 1H)
3.23 (apparent dq, <i>J</i> = 10.8 and 7.0 Hz, 1H)
2.41 (m, 1H)
2.29-2.14 (m, 3H)
2.12 (br s, 1H)
2.08-1.96 (m, 2H)
1.78-1.52 (m, 4H)
1.60 (d, <i>J</i> = 1.5 Hz, 3H)
1.41-1.15 (m, 6H)
1.10 (d, <i>J</i> = 6.6 Hz, 3H)
1.08 (d, <i>J</i> = 6.6 Hz, 3H)
1.06 (d, <i>J</i> = 7.0 Hz, 3H)
0.94 (d, <i>J</i> = 6.6 Hz, 3H)
0.90-0.80 (m, 5H)
0.84 (d, <i>J</i> = 6.6 Hz, 3H)
0.82 (d, <i>J</i> = 6.2 Hz, 3H)
0.66 (d, <i>J</i> = 6.6 Hz, 3H)


Literature data reported for **1**

¹ H NMR (500 MHz, CDCl ₃) δ
5.93 (s, 1H)
5.62 (apparent dt, <i>J</i> = 15.0 and 3.2 ^a Hz, 1H)
5.35 (dd, <i>J</i> = 15.0 and 9.0 Hz, 1H)
5.11 (d, <i>J</i> = 9.3 Hz, 1H)
4.43 (d, <i>J</i> = 8.1 Hz, 1H)
4.1 (m, 3H)
3.76 (d, <i>J</i> = 10.1 Hz, 1H)
3.73 (s, 3H)
3.63 (dd, <i>J</i> = 8.6 and 1.7 Hz, 1H)
3.56 (d, <i>J</i> = 9.2 Hz, 1H)
3.44 (apparent dt, <i>J</i> = 9.0 and 1.8 Hz, 1H)
3.23 (apparent dq, <i>J</i> = 10.8 and 7 Hz, 1H)
2.42 (m, 1H)
2.22 (m, 3H)
2.12 (br s, 1H)
2.01 (m, 2H)
1.75 (m, 4H)
1.6 (d, <i>J</i> = 1.3 Hz, 3H)
1.3 (m, 6H)
1.11 (d, <i>J</i> = 7.0 Hz, 3H)
1.10 (d, <i>J</i> = 6.6 Hz, 3H)
1.07 (d, <i>J</i> = 8.0 Hz, 3H)
0.95 (d, <i>J</i> = 6.6 Hz, 3H)
0.88 (m, 5H)
0.85 (d, <i>J</i> = 6.8 Hz, 3H)
0.82 (d, <i>J</i> = 6.6 Hz, 3H)
0.67 (d, <i>J</i> = 7.0 Hz, 3H)

(a) The surprisingly low value (3.2 Hz) indicated for the corresponding *J*³(H_{16(vinylic)}-H_{15(allylic)}) coupling constant is not in agreement with the one measured on our spectrum of zincophorin methyl ester (6.6 Hz). However the reported value appears to be abnormal for such couplings and is likely to be a mistake in the listing of the spectroscopic data.

Copies of the ¹H and ¹³C NMR spectra of zincophorin methyl ester **1**:

